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1 Introduction

We present a critical assessment of Piantadosi’s (2023) claim that “Modern language models refute
Chomsky’s approach to language,” focusing on four main points. First, despite the impressive per-
formance and utility of large language models (LLMs), humans achieve their capacity for language
after exposure to several orders of magnitude less data. The fact that young children become com-
petent, fluent speakers of their native languages with relatively little exposure to them is the central
mystery of language learning to which Chomsky initially drew attention, and LLMs currently show
little promise of solving this mystery. Second, what can the artificial reveal about the natural? Put
simply, the implications of LLMs for our understanding of the cognitive structures and mechanisms
underlying language and its acquisition are like the implications of airplanes for understanding how
birds fly. Third, LLMs cannot constitute scientific theories of language for several reasons, not least
of which is that scientific theories must provide interpretable explanations, not just predictions.
This leads to our final point: to even determine whether the linguistic and cognitive capabilities
of LLMs rival those of humans requires explicating what humans’ capacities actually are. In other
words, it requires a separate theory of language and cognition; generative linguistics provides pre-
cisely such a theory. As such, we conclude that generative linguistics as a scientific discipline will
remain indispensable throughout the 21st century and beyond.

2 “Unconstrained” Learning from Big Data is Not Human

OpenAI’s newest product at the time of writing, GPT-4,1 performs very well on a wide range of
standardized tests (though see Mart́ınez 2023). For example, on the LSAT, OpenAI reports that
GPT-4 scored better than roughly 88% of human test takers seeking admission to American law
schools, a significant boost from last year’s OpenAI product, GPT-3.5, which only outperformed
about 40% of human test takers. Both the performance and pace of improvement are remarkable
achievements. Nonetheless, the fact remains that young adults who pass the LSAT are doing so
without having read the trillions of sentences and structured internet data that these large language
models are trained on. The difference in training regimes is stark and highlights the fundamental
question: how do humans come to pass the LSAT, and other standardized tests, on comparatively
so little data?

1https://web.archive.org/web/20230314174836/https://openai.com/research/gpt-4. GPT stands for “Generative
Pre-trained Transformer.”
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Parallel questions arise in the domain of language acquisition by children, which is characterized
by a relative paucity of linguistic experience. Children are exposed to at most about ten million
tokens per year (Hart and Risley, 1992; Gilkerson et al., 2017), and most children have vocabularies
of under one thousand words around age three, regardless of the language being learned (Bornstein
et al., 2004; Fenson et al., 1994). Yet these same children produce sentences that largely obey the
grammatical rules of their communities’ languages (Berko, 1958; Brown, 1973; Montrul, 2004; Yang,
2006; Phillips, 2010; Slobin, 2022). Thus, a fundamental question of linguistic study is how children
become fluent in their native language(s) at a young age from so little data and experience.

The disconnect between the linguistic experience (input) and the linguistic capacity (output) is
what gives rise to the The Poverty of the Stimulus argument for the hypothesis that many aspects
of language learning and representation are innate (Chomsky, 1959, 1980; Nowak et al., 2001;
Yang, 2013). Under this hypothesis, children generalize from their limited input in specific ways,
navigating a constrained space of possible natural language grammars. Consequently, they do not
consider all logically possible generalizations that are consistent with their linguistic experience.
Rather, the particular structure of the hypothesis space facilitates the rapid development of their
linguistic capabilities. The Poverty of the Stimulus is not tied to a specific theory of language, such
as Minimalism or particular variants thereof, but rather follows from the basic problem of making
generalizations from experience, as we describe in the next section.

The contrast between the input to the child and the input to LLMs is striking, but Piantadosi
is not concerned by this discrepancy. He makes two claims. The first is that LLMs refute so-called
nativist theories of language because “modern language models succeed despite the fact that their
underlying architecture for learning is relatively unconstrained” Piantadosi (2023, 18). In other
words, he argues that broadly “blank slate” approaches to language learning are in fact viable, with
LLMs serving as a proof of concept. The second claim is that “our methods for training [LLMs]
on very small datasets will inevitably improve” (Piantadosi, 2023, 14). From these two claims,
Piantadosi concludes that LLMs show that unconstrained learning from small data is possible. The
remainder of this section addresses each argument in turn.

2.1 Feasible Learning Must be Constrained

Piantadosi is not the first researcher to claim that the general architecture of LLMs, or deep artificial
neural networks (ANNs) more broadly, “is relatively unconstrained.” As Baroni (2022, 5) points out,
work situating deep networks “within a broader theoretical context [does so] invariably in terms of
nature-or-nurture arguments resting on a view of deep nets as blank slates.” For example, Warstadt
et al. (2019, 637) take the position that that “if linguistically uninformed neural network models
achieve human-level performance on specific phenomena...this would be clear evidence limiting the
scope of phenomena for which the [argument of the Poverty of the Stimulus] can hold.” Pater
(2019, 43) similarly claims that “with the development of the rich theories of learning represented
by modern neural networks, the learnability argument for a rich [Universal Grammar] is particularly
threatened.” We refer the reader to Baroni (2022) for a plethora of further examples of such claims
drawn from the literature.

If deep ANNs really were so unconstrained, however, why would machine learning scientists
constantly tinker with the layers, the gating mechanisms, the architectures, and the tuning of the
hyperparameters? The reality is that these systems are biased in ways that are not well-understood.
Paraphrasing a turn of phrase from Rawski and Heinz’s (2019) critique of Pater (2019), “Ignorance
of bias does not imply absence of bias.” Indeed, Kharitonov and Chaabouni (2020) found that
when deep ANNs were trained on a small dataset which could have been generated by either
a hierarchical or linear function, LSTMs with attention and Transformers apparently inferred a
hierarchical function, while LSTMs without attention and CNNs inferred a linear one. Such a
result indicates the presence of robust biases in the network architecture and certainly does not
support a “blank-slate” view of deep networks. Though Piantadosi cites Baroni (2022) in support
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of his claim that LLMs constitute linguistic theories (§4), he fails to note the second half of Baroni’s
claim: that deep networks “are linguistic theories, not blank slates” (pg. 6, emphasis ours). As
Baroni (2022, 7) argues, “it is more appropriate, instead, to look at deep nets as. . . encoding non-
trivial structural priors facilitating language acquisition and processing.” Such “non-trivial” priors
are fundamentally at odds with a view of LLMs as “relatively unconstrained.”

But even with such non-trivial priors, the success of current LLMs depends at least in part
on being trained on inhumanly large amounts of data (e.g., Kaplan et al., 2020). Indeed, results
from the field of computational learning theory (CLT) have established that the kind of “relatively
unconstrained” learning Piantadosi suggests is not possible given feasible computational resources,
in terms of time and data. CLT studies what it means to learn a concept from experience from
a formal mathematical perspective. The primary conclusion from this research is that there are
fundamental computational laws of learning that cannot be shortcut. Informally, these laws say
that there is a trade-off between the family of concepts that one wishes to learn, the kinds of data
one wishes to learn those concepts from, and the computational resources (time and space) within
which one needs to accomplish that learning. In particular, it is not possible to learn all com-
putable concepts from arbitrary data presentations representative of them, with feasible amounts
of computational resources. This central result is encountered again and again as researchers study
different definitions of what “learning” means and examine which families of concepts are learnable
under such definitions (Gold, 1967; Wolpert and Macready, 1997; Vapnik, 1998; Jain et al., 1999;
Niyogi, 2006; De Raedt, 2008; Mohri et al., 2012; Valiant, 2013).

Figure 1 visualizes some of the parameters involved in defining a learning problem. In the figure,
the y-axis represents all possible concepts, including uncomputable ones. The x-axis represents all
logically possible data presentations: computable ones, uncomputable ones, ones with only positive
examples, ones with only negative examples, and ones with both positive and negative examples. A
learning problem is defined in part by selecting some subset C of the logically possible concepts and
identifying, for each concept c in C, the data presentations Dc that a learner is expected to succeed
on. Then a learning algorithm A can be said to learn the concepts C from data presentations of
kind D if and only if for all c belonging to C, and for all d belonging to Dc, it is the case that
A(d)≈ c. Learning problems may also bound the computational resources that A is allowed to use,
possibly as a function of d and c. Readers are referred to (Heinz, 2016) for a survey of different
formal learning paradigms.

Piantadosi cites Chater and Vitányi (2007) as an example of work that apparently defies these
computational laws because these authors present a paradigm and algorithm that learns any com-
putable language. However, there are two important qualifications to this work that Piantadosi fails
to mention. First, Chater and Vitányi themselves note that their result only holds because they
reduce the instance space of data presentations. In particular, the learner of Chater and Vitányi
(2007) is only required to succeed on positive data presentations “generated by some monotone
computable probability distribution” (p. 138). This result is actually similar to one obtained by
Gold (1967, p. 469) who showed that the class of computable languages is learnable when the pos-
itive data presentations are limited to ones generated by a particular kind of computable function
(Theorem I.7). Chater and Vitányi’s result, like Gold’s, follows in part because the instance space
of the learning problem has been reduced to cases where the data presentations include positive
examples generated by computable processes (see Figure 1). In other words, Chater and Vitányi’s
results exemplify the trade-off mentioned above: if one reduces the instance space of the learning
problem, by limiting which data presentations learners have to succeed on, one can expand other
aspects of the instance space, such as the family of concepts to be learned. This observation is not
new; it is originally due to Gold (1967).

While Chater and Vitányi’s reduction of the instance space is significant, however, it is not
enough to yield feasible learning of all computable languages. Another foundation of Chater and
Vitányi’s 2007 theoretical result is that they allow their algorithm to make “uncomputable” (p. 136)
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Figure 1: A visualization of how learning problems are defined. Defining a learning problem requires
defining which kinds of concepts (y-axis) ought to be obtained from which kinds of data (x-axis).
Another important parameter (not shown here) are computational complexity restrictions on the
learning mechanism itself. The yellow rectangle exemplifies some choices in formulating a learning
problem. Point (d, c) is an instance of the problem: learning concept c from data presentation d.

calculations. Incidentally, this is in contrast to Gold’s Theorem I.7, which only considers computable
algorithms. While Piantadosi is optimistic about what Chater and Vitányi’s “ideal” learner means
in practice, Chater and Vitányi are more circumspect. Setting aside the fact that that the heuris-
tics needed to bypass the uncomputable calculations render their theoretical result inert, they
acknowledge that “real language learning must occur reliably using limited amounts of data” and
therefore “a crucial set of open questions concerns how rapidly learners can converge well enough
on the structure of the linguistic environment to succeed reasonably well in prediction, grammat-
icality judgments and language production” (Chater and Vitányi, 2007, 155). In this regard, it
is worth mentioning that, to our knowledge, every learnability result that presents an algorithm
which “learns” the class of all computable languages or functions requires infeasible amounts of time
and data. Feasible learning – that is, learning with limited time and data – requires navigating a
restricted hypothesis space.
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Even the empiricist-minded Clark and Lappin (2011, chapter 7) recognize that constraining
the hypothesis space is likely the best way to obtain feasible learning results. They suggest one
approach is to “construct algorithms for subsets of existing representation classes, such as context-
free grammars” (Clark and Lappin, 2011, 149). In other words, they advocate restricting the class
of grammars targeted by learning algorithms to subclasses which are feasibly learnable. Such a
reduction of the hypothesis space is, at its core, an innate mechanism akin to those advocated for
by proponents of the Poverty of the Stimulus argument (e.g. Nowak et al., 2002).

At the end of the day, the results from CLT clearly and firmly support the Poverty of the Stimulus
argument. Even if LLMs were achieving some sort of “unconstrained” learning as Piantadosi
argues, CLT tells us that this would only be possible because they were trained on inhumanly large
training data, based on the tradeoffs outlined above. Learning from small, feasible amounts of
data and computational resources requires constraining the hypothesis space, meaning that even
if LMs eventually succeed at learning from small data, it will be because they encode “non-trivial
structural priors facilitating language acquisition and processing” as Baroni (2022, 7) suggests. At
some level, Piantadosi must understand this, because he himself suggests (pg. 14) that we might
improve training of LMs on small datasets by “build[ing] in certain other kinds of architectural
biases and principles” or “consider[ing] learning models that have some of the cognitive limitations
of human learners.” But what are these biases, principles, and limitations if not some form of the
Universal Grammar that Piantadosi (2023, 19) claims LLMs prove “to be wrong”?

2.2 Small Language Models are Anything but Inevitable

Piantadosi (2023, 14) is optimistic that “our methods for training [LLMs] on very small datasets will
inevitably improve.” This optimism, however, is not well-motivated. Firstly, both model size and
training size have seen exponential increases in recent years, and model performance has increased
proportionally (Kaplan et al., 2020). Creating smaller models trained on plausible data has never
been a central goal of natural language processing (NLP) – the field from which LLMs emerge
– because this field seeks primarily to optimize performance for engineering tasks in a world of
increasingly available training data and computing power. Secondly, work claiming to successfully
train LLMs to achieve human-like performance on human-sized inputs suffers from persistent flaws.
Their evaluation methods are weak, often not accurately testing the linguistic phenomena that
they purport to or adequately controlling for the presence of side-channel information that might
be exploited. Such test sets are particularly susceptible to “shortcutting” by neural models, which
have a notorious propensity for exploiting unintentional statistical side-channel information across
machine learning domains (Narla et al., 2018; Chao et al., 2018; Sun et al., 2019; Hassani, 2021;
Wang et al., 2022). Hence, it is reasonable to be skeptical that models’ apparent success on existing
evaluation metrics reflects an encoding of the grammatical principle these metrics supposedly test.
We elaborate on these rationales below.

Over the last four decades, natural language processing has consistently progressed by consuming
more and more data. Just considering the recent history of transformer LMs, while BERT (Devlin
et al., 2019) was trained on 3.3 billion tokens, GPT-3 (Brown et al., 2020) was trained on 300 billion,
two orders of magnitude increase in only a year, and thousands of times the input available to a
human child. This growth in training data has been facilitated by improved computing hardware
and a steady increase in model size: in the last few years alone, the definition of LLM has shifted
from models with 94 million parameters (ELMo; Peters et al., 2018) to 340 million parameters
(BERT-Large; Devlin et al., 2019), 11 billion (T5; Raffel et al., 2020), and 175 billion (GPT-3;
Brown et al., 2020). While this pattern has often been dubbed the “Moore’s Law of NLP,” it
actually far exceeds the exponential rate of growth predicted for transistors by the original Moore’s
Law (Figure 2; Liang 2023). Though the exact number of parameters or training data size of
GPT-4 are not publicly available, these trends suggest that GPT-4 likely has at least two orders
of magnitude more parameters than GPT-3, and is likely trained on as many orders of magnitude
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Figure 2: Growth in size of large language models compared to the predicted Moore’s Law growth
rate, beginning with ELMo.

more data; this would match the number of input tokens of perhaps millions of human learners,
approaching the combined lifetime experience of all 2022 LSAT takers. What’s more, as Piantadosi
(2023, 14) himself acknowledges, “work examining the scaling relationship between performance and
data size show that at least current versions of the models do achieve their spectacular performance
only with very large network sizes and large amounts of data (Kaplan et al., 2020).” Put simply,
Piantadosi’s suggestion that the performance of LLMs with smaller data will greatly improve is
overly optimistic, because this has never been the trajectory of NLP. Nothing short of a paradigm
shift would be required to get researchers chasing state-of-the-art performance to work with less
training data.

We have seen this play out in the field in recent years. While there have been many pushes
towards smaller data and more efficient training approaches, such efforts have, as of yet, failed to
substantially alter the mainstream course of the field. These pushes include the 2022 Annual Meet-
ing of the Association for Computational Linguistics (ACL) theme track on “Language Diversity:
from Low-Resource to Endangered Languages,”2 the upcoming BabyLM Challenge shared task,3 the
now-completed DARPA “Low Resource Languages for Emergent Incidents” (LORELEI) project,4

and the leaked document from Google discussing the success of open source order-10 billion (‘small’
in the current era) parameter LLaMA-variants.5 However, for every small data workshop, there are
large data workshops, like the 2021 Workshop on Enormous Language Models,6 whose call argued
that “näıve extrapolation of these trends suggests that a model with an additional 3-5 orders of
magnitude of parameters would saturate performance on most current [2021] benchmarks.” And of
course, the continued development and uptake of GPT-family and their LLM competitors, the most

2https://www.2022.aclweb.org/post/acl-2022-theme-track-language-diversity-from-low-resource-to-endangered-languages
3https://babylm.github.io/
4https://www.darpa.mil/program/low-resource-languages-for-emergent-incidents
5https://www.semianalysis.com/p/google-we-have-no-moat-and-neither
6https://welmworkshop.github.io/
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data-hungry class of NLP models ever built, is undeniable. Large, well-funded research teams are
not yet investing in learning from small data to anywhere near the extent that they are investing
in learning from enormous data. We hope this changes too, but we cannot count on it.

Apparently bucking the trend for exponential growth, a series of recent papers have claimed
to show that LLMs can already perform well with training data that more closely resembles a
human learner’s input (e.g., Huebner et al., 2021; Zhang et al., 2021; Warstadt and Bowman, 2022;
Hosseini et al., 2022).7 The authors support their conclusions by training models on smaller, often
domain-relevant data sets, such as a pre-processed version (Huebner andWillits, 2021) of the English
subset of the CHILDES collection of child-directed speech corpora (MacWhinney, 2000), and testing
their behavior on grammar test suites of the kind cited by Piantadosi (e.g., Warstadt et al., 2020;
Gauthier et al., 2020; Huebner et al., 2021). The reasoning behind such test suites is as follows:
models are presented with grammatical-ungrammatical sentence pairs, designed to test the model’s
ability to discriminate between them according to some carefully chosen syntactic (or in practice,
also semantic or lexical) phenomenon. Such phenomena include, for example, coordinate structure
islands, long-distance subject-verb agreement, or an appropriate choice of negative polarity items.
In gradient versions of the tasks, the model assigns a probability to both sentences in the pair,
and if the grammatical sentence is awarded the higher probability, the model succeeds at the test.
Alternatively, in binary versions of the task (e.g., Warstadt et al., 2019), a classifier is trained on top
of the LLM, and the resulting model’s task is to classify sentences as grammatical or ungrammatical.

If the goal of these test suites is to show that a model is encoding knowledge of the grammar,
however, further assumptions are required regarding the interpretation of the model’s outputs.
Firstly, one must assume that the values output by the model are, in general, a good reflection of
human acceptability judgments. However, it is not immediately obvious that this is the case: Lau
et al. (2017), for example, report mixed results when correlating model predictions with human
acceptability judgments. Similarly, though Piantadosi cites Warstadt et al. (2019) as an example of
an LSTM matching well with human judgments, he neglects to address the authors’ own conclusions
that the model “perform[s] far below human level on a wide range of grammatical constructions”
(Warstadt et al., 2019, 625). Indeed, the mid-70% performance Piantadosi refers to is accuracy
aggregated across the entire test set. When the MCC, a special case of Pearson’s r for Boolean
variables, is measured instead, the model achieves only about 0.3, compared to humans’ 0.65-0.8
(Warstadt et al., 2019, 630). Here, it appears that good performance in terms of simple accuracy
does not necessarily reflect human-likeness. Furthermore, when evaluated on controlled test sets
targeting specific grammatical principles, performance is extremely mixed. The best-performing
model achieves nearly 1.0 MCC on a basic SVO word-order task, but only 0.15 on the reflexive-
antecedent agreement task. By contrast, Warstadt et al. (2019, 635) argue that “most humans
could reach perfect accuracy,” or an MCC of 1, on the same task.

But even if one were to set these quantitative concerns aside – numbers are likely to go up over
time – there is a second, more fundamental underlying assumption: that a model will succeed at
these tasks if and only if it somehow encodes something equivalent to the grammar, or at least
the relevant portion of the grammar. If there are other possible explanations for the success of the
model on a given test, then the tests alone can only tell us about a model’s predictive abilities, not
any grammar it may encode. Unfortunately, this assumption is immediately undermined. Creators
of these test sets often fail to control for side-channel information that a model could exploit in
order to “succeed” at the task. Since neural models are well-known to make use of such side-

7Authors differ dramatically in how much input they consider human-like. Huebner et al. (2021) train on five
million words of American English child-directed speech in their smallest experiments, while Warstadt and Bowman
(2022) and the BabyLM Challenge, which also focus on American English, consider 100 million words, corresponding
roughly to a ten-year-old’s input, to be appropriate. However, English learners express inflectional morphology,
agreement, and many major syntactic phenomena within three to four years, with only a third as much input (e.g.,
Brown, 1973; Slobin, 2022). Many of these phenomena are evaluated in popular test suites (e.g., Warstadt et al.,
2020; Huebner et al., 2021).
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channel information, skepticism about apparent successes on these tests is warranted. Put simply,
the tests do not convincingly show that only a model that has achieved a human-like understanding
of language can succeed at these tasks.

Consider, for example, the subject-verb agreement test sentences in BLiMP (Warstadt et al.,
2020), a large minimal pairs grammaticality test set. The subject-verb agreement test pairs are
intended to test for long-distance agreement dependencies, with the implication that a model which
succeeds should employ underlying hierarchical rather than linear representations. In our inspection
of the test suite, we find that, for a full two-thirds of these sentences, the subject and verb are string
adjacent (e.g., “Most legislatures haven’t disliked children.”) These sentences do not require a
model to encode long-distance agreement. For the remaining third, there is an intervening distractor
noun (e.g., “A niece of most senators hasn’t descended most slopes.”). However, whether or not
there is a distractor, it is always the first/leftmost noun that triggers agreement. Thus, a model
employing “agree with the leftmost noun” would achieve perfect accuracy on the the tests even
though it does not leverage anything like hierarchical structural knowledge. Indeed, theoretical
linguistics provides us with the tools to more thoroughly test models, a point which we will return
to in §5.2.

Despite numerous shortcomings of this type, BLiMP is a widely used test set, and will form
a portion of the test data in the upcoming BabyLM Challenge. It was also used by Zhang et al.
(2021), who Piantadosi cites as evidence that LLMs can learn syntax on relatively small data (10-
100 million words). Due to presence of potential shortcuts in this test set, however, there is reason
to be skeptical of Zhang et al.’s conclusions, and thus of Piantadosi’s subsequent optimism for the
prospects of small LMs. This critique is not meant to disparage the practical utility of modern
LLMs or any move towards smaller LMs, but it does draw into question this kind of evidence and
the wide-reaching conclusions that some researchers draw from it.8

The presence of potential shortcuts such as “agree with the leftmost noun” is a particular
problem for evaluating ANNs in general, since these models are infamous for deftly exploiting
statistical side-channel information. This is not limited to NLP alone. For example, initially
promising results from CNNs trained to detect and classify skin cancer from images were overturned
when it was shown that the models were actually classifying according to the presence of rulers
or surgical skin ink markings (Narla et al., 2018; Winkler et al., 2019) in the positive images.
The models found an inadvertent easier correlate with the task objective and focused on that
instead of detecting skin cancer, creating a potentially life-threatening situation. Closer to our
field, neural models have been shown to exploit the a priori likelihood of answers in multiple-choice
visual question answering (VQA) tasks (Chao et al., 2018). A totally random baseline is expected
to achieve 25% accuracy on a four-option multiple-choice test, yet the models that were tested
achieved 52.9% accuracy when only exposed to the answers with no paired image or question.
Since they achieved 65.7% when the task was run normally, the bulk of their performance has to
be attributed to unintended statistical regularities in the distribution of multiple-choice answers
rather than an understanding of the VQA task itself. This clear-cut case may also be relevant
to GPT-4’s performance on the multiple-choice LSAT. There are many other examples in NLP
as well, including linear shortcuts in probes of linguistic structural knowledge such as patterns
like “agree with the leftmost noun” and n-gram probabilities (McCoy et al., 2019; Kodner and
Gupta, 2020) and the unintended exploitation of explicit and implicit social stereotypes in training
data (Sun et al., 2019; Thompson et al., 2021), among others (Wang et al., 2022). Social biases
induced by biased training data are so omnipresent that mitigation efforts have becomes a subfield
unto themselves, for example spawning a series of workshops at NLP venues.9 Given the litany of
unexpected shortcuts that LLMs readily discover, it is a misjudgment to assume that they will not

8Similar points have been made regarding conclusions that can be drawn from artificial language learning exper-
iments (Rogers and Hauser, 2009; Rogers and Pullum, 2011; Jäger and Rogers, 2012).

9https://aclanthology.org/venues/gebnlp/
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find and take such linguistic shortcuts on the test sets of the kind cited by Piantadosi, unless it is
robustly demonstrated otherwise.

Of course, the existence of these shortcuts does not mean that the LLMs subjected to these
tests do not encode human-like linguistic knowledge or do not use such knowledge to solve the
tests. But, it also means that success on these tests does not tell us that the models do encode
linguistic knowledge either. Additional careful investigation needs to be done past just showing
good performance on evaluation sets. For example, by carefully controlling test sets as in Chao
et al. (2018), we can mitigate – though not necessarily remove – the opportunity for shortcuts,
and by employing probes of the internal state of the models, we gain some understanding of the
representations that they employ (Belinkov and Glass, 2019; Tenney et al., 2019b; Futrell et al.,
2019; Liu et al., 2019; Manning et al., 2020; Linzen and Baroni, 2021; Rogers et al., 2021; Pavlick,
2022; Wilcox et al., 2022). Nonetheless, neither approach is a silver bullet, as we discuss in §4.

2.3 Section summary

Piantadosi bases his attack on nativist approaches to language science on the arguments that LLMs
represent “relatively unconstrained” learners, and that successfully training such unconstrained
learners on small data is not only possible, but inevitable. To the contrary, LLMs are in fact not
unconstrained, and unconstrained learning is not possible from plausible human-sized data with
feasible computational resources. These conclusions follow from fundamental computational laws
that are no more violable than the conservation of energy laws in physics. Put simply, there is as
much chance for feasible unconstrained learning in artificial intelligence as there is for a a perpetual
motion machine in physics. Further, the prospect that engineers building LLMs will fully embrace
small data is unlikely, and even if they do, current methods for evaluating such models provide little
confidence that they actually encode the grammar in question, rather than exploiting statistical
shortcuts to “pass” the tests.

3 Simulation is not Duplication

What can artificial intelligence tell us about natural intelligence? On the one hand, models offer
existence proofs about procedures that may underlie some cognitive function. On the other hand,
there is Searle’s (1980, 422) critique of Turing’s (1950) imitation game: “Such intentionality as
computers appear to have is solely in the minds of those who program them and those who use
them, those who send in the input and those who interpret the output.” The human tendency
to anthropomorphize may cloud our scientific judgments when it comes to inferring underlying
mechanisms of complex systems. But even if one rejects Searle’s position, what does imitation
mean? As Chomsky (2004, 318) writes, “Imitation of some range of phenomena may contribute to
this end [providing insight], or may be beside the point, as in any other domain.”

3.1 Multiple Realizability

The mere fact that distinct systems exhibit the same behavior does not mean that they employ the
same internal mechanisms. Guest and Martin (2023), who apply this reasoning specifically to the
question of ANNs as models of cognition, present an example of two clocks, which appear identical
on the outside, but are different on the inside: clock A is digital, but clock B is analog. If only
the internal mechanism of clock A is known, would it be a mistake to conclude that clock B uses
the same mechanism, and thus is also a digital clock? This is an incorrect conclusion despite their
identical appearance and behavior. Similarly, both planes and birds can propel themselves through
the air. Should we conclude that birds are powered by jet fuel because we know how to build jets
but not birds?
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Analogies of this sort abound. In a public discussion that Piantadosi participated in following the
publicizing of his paper, Rosa Cao of Stanford asked Piantadosi about whether identical performance
indicates an identical mechanism with this example:10 two students pass an exam, but student A
cheated, whereas student B genuinely understood the material. Clearly, identical performance on
a test does not mean the same processes have been invoked.

Each of these examples can be described as a case of multiple realizability. That is, similar
outcomes can be achieved by superficially similar but underlyingly distinct mechanisms of operation,
whether that is the flight of birds and jets, or the grades of honest students and cheaters. Multiple
realizability is a particular problem in cases where the systems under investigation are black boxes.
A clock that we cannot open to inspect is a black box, as is the instructor’s view on the test
preparation strategies of a student. Human cognition and the internals of massive LLMs are largely
black boxes as well. A common strategy for detecting multiple realizability is to shed light on the
nature of the black box with other information about its internal mechanisms. For example, if we
are trying to understand how a bird propels itself through the air, we do not turn to the flight of
jets, because we know from other observations that animals do not burn jet fuel. Similarly, we can
identify a probable cheater if we catch them passing notes with their neighbor.

Guest and Martin (2023) formalize this reasoning for application to cognitive claims drawn
from ANNs. It is an inappropriate application of modus ponens to conclude that a neural model
is a cognitive model because it predicts human behavior. Rather, if the neural model is (through
additional evidence) a plausible cognitive model, then we should expect it to behave in human-
like ways. Thus, we should ask whether what we know about LLMs suggests any underlying
commonality to humans. However, like birds and airplanes, our knowledge of the two systems
suggests that the underlying mechanisms are quite distinct.

We provide three examples. First, as previously discussed, ANNs rely on many orders of magni-
tude more data than humans do to achieve their levels of performance. Thus, from the perspective
of CLT, a human language learner or LSAT test taker are solving a different learning problem than
GPT training for the same tasks. Second, the learning mechanisms employed by ANNs rely heavily
on backpropogation, which neuroscientists believe is a biologically implausible way to pass and
update information (Lillicrap et al., 2020; Yang and Wang, 2020).11 Third, the success of LLMs
depends in part on the large “context windows” and other built-in “hyperparameters” that they
use. The context window roughly refers to the length of a sequence of words these LLMs can access
when generating responses to user prompts. The size of the context windows of state-of-the-art
LLMs number in the thousands. GPT-3, for example, has a context window size of about 2,000,
and people speculate GPT-4 has increased this anywhere from a factor of four to a factor of 20
(nobody knows for sure since OpenAI will not release the details, see §4). There is no sense in
which humans have any kind of working-memory counterpart to this, which would require a perfect
memory of thousands of recently observed words.

Continuing the reasoning from Guest and Martin (2023), one may also apply modus tollens to
reason through negative results. If a particular ANN does not behave in a human-like way, then
that one is not a good model of cognition. Earlier ANNs consistently under-performed compared
to humans, so those particular implementations could be rejected. However, no model is perfect, so
the failure of a particular ANN cannot lead us to conclude that ANNs as a class should be rejected
too. This unfortunately renders a simple negative existence proof for a cognitively plausible ANN
untenable, just as a positive result cannot be interpreted, in itself, as a positive existence proof.

10Link to a recording of the public discussion
11Especially at an implementational level, even when an ANN appears to employ a similar problem-solving strategy

(Zipser and Andersen, 1988; Stork, 1989). A body of literature on biologically implementable equivalents to back-
propagation in ANNs exists in both the machine learning and neuroscience (e.g., Mazzoni et al., 1991; Balduzzi et al.,
2015; Ahmad et al., 2020), but this is primarily focused on computational equivalents or alternatives rather than
supporting the notion of standard backpropagation through gradient descent “backward in time” as a biologically
plausible process. It further emphasizes the implausibility of backpropagation as the term is normally used.
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One recurring source of non-human-like behavior in ANNs, however, is their inability to reproduce
human-like learning errors even when they achieve high levels of performance.

A classic example of this discrepancy emerged during the Past Tense Debate, a predecessor to
the modern debates on the cognitive plausibilities of ANNs which raged in the 1980s and 1990s. The
debate was superficially centered on computational models for the acquisition of English past tense
inflection, but the fundamental issue at stake was whether connectionist ANNs, with their suppos-
edly tabula rasa nature and their distributed representations, could unseat models of inflection rep-
resentation and learning drawn from prevailing linguistic theory (Rumelhart and McClelland, 1986;
Pinker and Prince, 1988; Pinker and Ullman, 2002; McClelland and Patterson, 2002). What’s new
is old, in that sense. One major observation from the old debates was divergent behavior between
human learners and the ANNs of the time in terms of overregularization and over-irregularization.

Overregularization, the application of a regular/productive/default pattern to a form that should
be irregular (e.g., *feeled for felt) is robustly attested in observational and experimental studies on
the acquisition of the English past tense as well as cross-linguistically. It makes up between 5% and
10% of productions in child German (Clahsen and Rothweiler, 1993), English (Marcus et al., 1992;
Xu and Pinker, 1995; Maratsos, 2000; Yang, 2002; Maslen et al., 2004; Mayol, 2007), and Spanish
verbs (Clahsen et al., 1992; Mayol, 2007). Importantly, overregularization occurs regardless of
the frequency of the productive process (Marcus et al., 1992; Belth et al., 2021). Furthermore,
overregularization often leads to a developmental regression or U-shaped learning trajectory : a dip
in overall production accuracy when a child learns and begins to over-apply a productive process
(e.g. Marcus et al., 1992; Ravid and Farah, 1999; Clahsen et al., 2002). Over-irregularization, on
the other hand, (e.g., wing-*wang by analogy to sing-sang) is far rarer in the same studies, under
1% in German participles, 0.2% in English, and 0.01% in Spanish.

However, the past forty years of debate have shown a persistent failure of ANNs to replicate
these human learner patterns. In the first match of the debates, Pinker and Prince (1988) already
observed frequency-dependent over-generalization in the ANN of Rumelhart and McClelland (1986)
and showed that the latter’s apparent developmental regression was only achieved due to severely
unnatural training data presentation. While the raw accuracy of much more powerful modern
ANNs dwarfs that of Rumelhart and McClelland (1986), it has been repeatedly demonstrated that
these various architectures still fail to produce human-like error patterns. They are still overly
frequency-dependent, fail to achieve developmental regressions where appropriate, and do not yield
the expected asymmetry in overregularization and over-irregularization (e.g. Corkery et al., 2019;
McCurdy et al., 2020a,b; Kodner and Khalifa, 2022; Kodner et al., 2023). It is certainly possible
that an ANN architecture not yet invented will address these issues, but the persistence of these
problems despite dramatic engineering advances in ANN architecture and training suggests the that
issue is a more fundamental characteristic of ANNs as a class.

3.2 Failures are More Informative than Successes

Given the basic problem of multiple realizability in cognitive science, it is strange that Piantadosi
endorses Warstadt and Bowman’s (2022) contention that an LLM’s failures are scientifically less
interesting than its successes. Warstadt and Bowman’s reasoning is that successes count as an
existence proof that at least some member of the class of artificial neural networks can solve the
task, while a failure is ambiguously attributable to either a fundamental weakness of ANNs as a
class or the incidentally imperfect state of the current technology. This conclusion is wrong for
two reasons. The first is practical: it requires us to accept that the task that the researcher has
adopted to test some property of the ANN is itself able to discriminate between a success and
a failure. As we have discussed at length, however (§2), current approaches are not convincing.
Warstadt and Bowman’s own grammaticality evaluation test suite, BLiMP (Warstadt et al., 2020),
for example, contains many weaknesses (§2, 5). Since neural models of all shapes and sizes will
exploit unintended shortcuts in their input in order to take the path of least resistance (§2, e.g.,
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Narla et al., 2018; Winkler et al., 2019; Chao et al., 2018; McCoy et al., 2019; Wang et al., 2022) it
is reasonable to conclude that LLMs are likely “cheating” on these tests until proven otherwise. In
such cases, their successes do not constitute an existence proof, but rather a pointer to areas which
require further investigation.

The second reason is again the logical problem of multiple realizability. Piantadosi as well as
Warstadt and Bowman (2022) draw exactly the wrong conclusion here. A positive result lends
support to an approach that we have external reasons to believe is a plausible model of cognition.
It cannot itself be the justification for that assertion. A negative result, on the other hand, is proof
positive that this particular model, in this particular learning setting, is not an appropriate model
of cognition. Of course, a related model on a related learning problem may be an appropriate
model. It would be ideal if positive results could serve as existence proofs and negative results
could eliminate whole classes of models, but the universe need not orient itself for our scientific
convenience.

3.3 Section Summary

Somers (2013) quotes Douglas Hofstadter, “Why conquer a task if there’s no insight to be had from
the victory? Okay, Deep Blue plays very good chess — so what? Does that tell you something
about how we play chess? No.” Claiming that the human language faculty is somehow LLM-like
because GPT-4 outperforms most test takers on the LSAT is akin to concluding that Kasparov
interprets a chessboard like Deep Blue because it beat him, or that birds burn jet fuel because
jets out-speed and out-distance small animals. But worse, it would be akin to concluding that
Clock B is digital without understanding how digital clocks work. What would we gain from such a
conclusion? Certainly neither explanation nor elucidation: we would simply replace a mystery with
a black box. If the goal of a scientific theory is to provide an explanation, then it is unclear how a
scientific theory of language based on LLMs might provide this, a point to which we turn in §4.

4 LLMs are not a Scientific Theory

Piantadosi argues that ChatGPT’s impressive capabilities mean that it constitutes a theory of
language. He is not the only writer to advocate for adopting neural networks as theories. Potts
(2019), for example, advocates for adopting deep learning as a theory of semantics. However, it is
unclear what such a theory tells us about language. Echoing the connectionists during the Past
Tense Debate, Piantadosi mentions gradient representations, the use of word prediction as a learning
signal, and the lack of built-in constraints as elements of such a “theory.” However, these are rather
general properties, and no specifics are offered. It is easy to see why: the role of a scientific theory
is to elucidate and explain (Popper, 1959), and LLMs largely fail to do either.

Our argument comes in two parts. First, as corporate models, LLMs violate the best practices
of open science and software development, and their results are neither replicable nor reproducible.
Second, even if the models were open-source, we are far from understanding how they work, so
they cannot presently provide a scientific explanation. All ANNs do is predict, and prediction is
not explanation. Theories that made relatively accurate predictions historically, like the well-worn
example of Ptolemaic epicycles on epicycles, have turned out to be incorrect, so prediction is not
the end-all for judging the success of a theory. While ANNs certainly have many useful applications
– fitting hypotheses to data or carrying out downstream engineering tasks – they cannot constitute
scientific theories for the simple reason that they currently explain very little about language.
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4.1 Corporate “Science”

The LLMs of today are a corporate product, not a scientific one. Industry dominates the creation
of LLMs due to the high financial and compute costs associated with their training (Ahmed et al.,
2023), and the corporations releasing these LLMs are often cagey about the details of their imple-
mentation (Liesenfeld et al., 2023). We still do not know, for example, the architecture or training
data that GPT-4 uses or how often it is updated, or what kind of hand-tuning or output filters it
has, because information about the product is released through public press releases rather than
peer-reviewed publications as is standard in linguistics, NLP, and cognitive science. This lack of
clarity means that modern LLMs are neither replicable nor reproducible, nor can the most recent
LLMs be subject to the probes of internal state that earlier LLMs could be. Of course, this is likely
by design: it is a savvy business strategy not to disclose the details of your model, lest a competitor
beat you at your own game.12

Indeed, this illustrates one of the dangers of using corporate models for science: the goals of
the corporations creating the models (i.e., to increase profits) are not the same as the goals of
the scientists trying to probe the models (i.e., to come to a scientific understanding of language).
LLMs are also constantly changing as new edge cases are found and reported, and many layers
of employees are actively engaged in curating training content and guiding the outputs of the
models (Perrigo, 2023; Hao and Seetharaman, 2023).13 Again, these approaches work well for the
corporations who own the models, since they want the LLMs to behave well so they can maximally
profit from them. But these approaches run against the goals of science, further obfuscating the
implementation details of already opaque models. The different goals of the corporations owning
the models and the researchers probing them should not be taken lightly.

Consider an analogy to buying a used car: the salesperson wants to make a sale, and you want to
receive information on the details and value of the car. If you wouldn’t trust the salesperson to give
you completely honest information about the details of the car, why would you trust corporations
to do so for their LLMs? Both have the same ulterior motives: to make their product look good in
order to gain maximum profit. As anyone who has bought a used car knows, these motives often
lead to stretches of the truth. But there is no Carfax for LLMs: the normal process of peer review
has been bypassed by industry press releases and preprint publications.

Open source LLMs, such as the newly released LLaMa 214 mitigate some, but not all, of these
challenges but as of yet only constitute a fraction of LLM use. Additionally, LLMs billed as
open source, including LLaMa 2, are also not nearly as open as their marketing would lead one to
believe, suffering from poor documentation, limited or no access to training data or hyperparameters
or output filtering steps, and so on (Liesenfeld et al., 2023).15 Both the new corporate mode of
publication and the importance of opensourcing models were focuses of the panel “The Future of
Computational Linguistics in the LLM Age” at the recent 2023 Annual Meeting of the Association of
Computational Lingusitics (ACL), one of the largest gatherings of NLP researchers. This transition
away from clear, open, replicable, research is clearly a concern for researchers across NLP as much
as it as among linguists and cognitive scientists.

4.2 Prediction Alone is not Explanation

Even if LLMs were truly open source and all pieces were known, they would still not function as a
theory of language because it is not well-understood how they work. Piantadosi (2023, 8) himself

12It is particularly surprising that Piantadosi does not express concern about this lack of openness and replicability
given his past support for strong replicability requirements for scientific research (Rieth et al., 2013).

13Articles in Time Magazine January 18, 2023 and The Wall Street Journal July 24, 2023.
14Meta press release: https://about.fb.com/news/2023/07/llama-2/
15See https://opening-up-chatgpt.github.io/ for a growing list of open source LLM scorecards supplementing

Liesenfeld et al. (2023).
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acknowledges that “it [can] be hard to determine what’s going on, even though the theory is certainly
in there.” But what does it mean for a theory to be hidden in a black box?

A cottage industry has popped up over the last few years within NLP seeking to understand
the inner workings and behaviors of popular ANN architectures. It goes by many names, including
“explainability and interpretability” or “BERTology” (Rogers et al., 2021), though the latter term
is beginning to show its age (e.g., Belinkov and Glass, 2019; Tenney et al., 2019b; Liu et al., 2019;
Manning et al., 2020; Linzen and Baroni, 2021; Pavlick, 2022). This is certainly a step in the right
direction, but the largest obstacle is that LLMs are, by nature, not easy to interpret. Even when all
parameter values are available, which is no longer generally the case for the most powerful LLMs,
it is not straightforward to map these to model behavior, and this problem is only exacerbated as
model size increases. Indeed, Piantadosi himself acknowledges that “we don’t deeply understand
how the representations these models create work” (Piantadosi, 2023, 8). Understanding what goes
on inside these LLMs is a bonafide research problem, but this hinders, rather than facilitates, the
case for making LLMs a theory of language, as we explain in §5.

While advances in these research methodologies is progressing rapidly, the field is stuck playing
catch-up with ever-evolving and increasingly opaque and corporate models. There is no equivalent
to BERTology for the latest crop of LLMs because we lack the necessary access to probe them in
the way we could even a few years ago. While there is obvious value in such an enterprise for the
purposes of developing an understanding of state-of-the-art research tools, we ask whether it makes
sense to try to explain the human mind by studying an ever-cycling menagerie of opaque human
artifacts instead. We do not understand how these LLM artifacts work, they are produced by NLP
researchers with entirely different goals in mind, and they will be made obsolete as soon as the next
big thing is announced. If the role of scientific theory is to elucidate, then a theory of language
based on LLMs does the opposite.

Even if we could pin down and perfectly probe current LLMs, these prediction machines still
fall flat from the perspective of explanation. To make a classic analogy to the history of science,
consider the case of Ptolemy and Copernicus: while Ptolemy was able to “fit the data” – in this
case, explain the relative motion of planets – within a geocentric perspective, doing so required
complicating his theory. The introduction of epicycles within epicycles within epicycles, and the
fine-tuning of each planet’s epicycle to best match its respective movements, eventually succeeded in
fitting the observations of the day exceedingly well, and indeed better than Copernicus’s heliocentric
theory when it was introduced. But of course, we now know Copernicus’s view of heliocentrism
was fundamentally a step in the right direction. Later refinements of the heliocentric model turned
out to not only be the correct explanation, but also a far simpler one, which not only predicts the
motion of heavenly bodies but also explains them. We can see LLMs and other large statistical
analyses as behaving like Ptolemy’s theory: they may fit the data well, and they may even provide
extremely accurate predictions. But theoretical linguistics, unlike LLMs, is able to provide a concise,
explanatory account, even if – like Copernicus – this account cannot predict language use as well.
Again, if the role of science is to provide elucidation and explanation, then both heliocentrism and
theoretical linguistics are scientific theories, even if Ptolemy and LLMs win the prediction game.
Piantadosi suggest that a good theory of language “is certainly in” the LLMs somewhere. But, if
medieval astronomers had all taken that perspective on Ptolemy’s model, would they have found
their way to heliocentrism?

Piantadosi makes his own analogy to physics, suggesting that an ANN might be used to de-
termine whether gravitational force falls off with distance or with distance squared. This analogy,
however, confuses a tool for testing and elaborating a theory with the theory itself. In his example,
the physicist already has two hypotheses (Piantadosi 2023, 7 calls them “theories”), both of which
are stated with closed-form, easily interpretable, mathematical solutions ( 1r and 1

r2 , respectively).
In this example, the ANN – or indeed, any other means of making a maximum likelihood estimate
– is only used as a tool for fitting a parameterized version of the hypotheses to the data. Crucially,
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these hypotheses are generated beforehand by the underlying theory of Classical Mechanics and
are not themselves a product of the maximum likelihood estimator. The role of the ANN is simply
to fit a parameter to select between two possible explanations of the data; it is thus not itself the
theory but rather a tool for distinguishing the predictions of two hypotheses generated by some
other theory.

However, Piantadosi does not merely argue that LLMs are a useful tool for discriminating
between hypotheses in theoretical linguistics. He argues that LLMs themselves constitute a theory
that should replace traditional theoretical linguistics. Under such a view, the LLM would not
simply be an adjudicator between hypotheses generated by existing theories, as he recognizes, “we
don’t explicitly ‘build in’ the theories under comparison” (Piantadosi, 2023, 8). However, he fails
to recognize that his own analogy, which does build in and test an existing theory’s hypotheses, is
inappropriate because of this.

If we insist on drawing one further comparison with physics, a more fitting analogy to his ar-
gument comes from ANN applications to the three-body problem: one may observe that, despite
generations of effort, theoretical physics has consistently “failed” to produce practically usable
closed-form solutions to cases of this problem (because no such solution exists mathematically).
However, recent approaches predicting the relative motion of three bodies statistically with ANNs
(e.g., Breen et al., 2020) have shown great promise. Under Piantadosi’s reasoning, the apparent su-
periority of these neural prediction approaches over traditional theory should render them a serious
alternative theoretical basis for physics. This is, of course, absurd. ANNs and other probabilis-
tic approximators are tools for carrying out predictions when it is too impractical or impossible
to deploy a closed-form solution, not a replacement for the original underlying explanation. The
three-body ANN does not tell us anything about the theoretical bases of the interaction of the three
objects. Similarly, LLMs don’t tell us anything about the theoretical bases of language merely be-
cause they make accurate predictions. The idea that a theory could be hidden in the approximator
somewhere is a category error.

While we argue that Piantadosi has made an error by calling ANNs a theory of language, we
agree that they have proven successful in serving as predictive models. They form the basis of
increasingly useful tools for a wide range of practical applications in the sciences and elsewhere.
Piantadosi (2023, 9) finds the status of LLM research “somewhat akin to the history of medicine,
where people often worked out what kinds of treatments worked well (e.g., lemons treat scurvy)
without yet understanding the mechanism.” He also likens the field to “modeling hurricanes or
pandemics” in which “the assumptions are adjusted to make the best predictions possible,” but
this is the same category error again. A good predictive model is not the same as a good theory.
Models for predicting weather patterns and pandemics are tools in the scientific toolbox. They are
not the theories themselves. The theory is our understanding of a mechanism, not merely the body
of observations that spur further research. Theories in meteorology and epidemiology synthesize
everything from fluid dynamics to physiology, along with direct empirical observation of real-world
complex systems, and yes, computational modeling.

4.3 Section Summary

Piantadosi’s endorsement of OpenAI’s ChatGPT embraces corporate “science” and all the practices
that it embodies: unaccessible software, data, lack of replicability, and incentives that align with the
pursuit of the bottom line and not the pursuit of truth. By emphasizing prediction to the exclusion
of understanding, Piantadosi promotes a disappointingly shallow interpretation of science and what
it has to offer. In our view, a linguistic theory should provide explanations for linguistic capacities,
not merely predict language text. This is largely concordant with the perspective of van Rooij
and Baggio on the nature of theory in psychology, emphasizing explanation over prediction, an
understanding of capacities over effects, and a theoretical cycle combining verbal and mathematical
formalization with empirical study (van Rooij and Baggio, 2020, 2021). To call LLMs a theory
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rather than a tool misses all of this entirely.

5 Why Linguistics Will Thrive in the 21st Century

In the previous sections, we argued that LLMs cannot constitute a scientific theory of language
because they are largely proprietary and uninterpretable, and their focus is on prediction, not
elucidation or explanation. In contrast, however, linguistic theory aims to provide an explanatory
account of human languages. By making use of a set of abstract universals, linguistic theory seeks to
concisely explain why languages are structured the way they are and make testable predictions about
grammatical distinctions within and across the world’s languages. We argue that even if LLMs
appear to fit the data better than linguistic theory, only the latter succeeds as a scientific theory
because only it provides an explanation of why the relevant patterns arise. Indeed, without linguistic
theory, there would be no way to test the linguistic capabilities of ANNs. Test suites designed
for phenomena such as subject-verb agreement or anaphora are designed to test whether LLMs
encode the distinctions provided by linguistic theory. Similarly, work probing LLMs often seeks
to find evidence for the abstract universals predicted by linguistic theory, for example hierarchical
structure. Thus, generative linguistics broadly construed is a true scientific theory of language, one
which will continue to thrive in the 21st century.

5.1 Linguistic Theories offer Explanations

Consider the simple example of subject-verb agreement, or the difference in grammaticality between
“I say she walks” and “*I say she walk” in most varieties of English. Linguistic theories provide
interpretable mechanisms for enforcing this formal distinction in terms of abstract universals such as
hierarchical structure, features, and locality. For example, in Minimalism, a theory of the structural
basis of grammaticality, φ-features of the subject (person, number, gender) are copied to the verb,
and syntactic structural locality constraints on the copying mechanism predict the difference in
grammaticality of the sentences. The same theory that distinguishes the sentences above also
makes cross-linguistic predictions about the typology of subject-verb agreement. Agreement relies
primarily on syntactic structure, not linear order, so we do not expect to find a language in which
the verb always agrees with the noun in the third linear position, for example. As new evidence
regarding the typology of agreement is introduced (e.g., van Urk 2015), the theory is updated to
account for this evidence; new explanations are found and new typological predictions are made
and tested. This ability to explain and predict the syntactic relations of natural language contrasts
sharply with the ability of LLMs (Moro et al., 2023). To the extent that LLMs show knowledge
(i.e., predictive ability) of subject-verb agreement without the possibility of exploiting side-channel
information (§2), they still do not provide a clear explanation as to why this difference exists, due
to their lack of interpretability. Consequently, they cannot make the same kinds of cross-linguistic
predictions that syntactic theory does.

The distinction between LLMs and linguistic theory outlined above is analogous to Chomsky’s
argument that Bayesian modeling and similar statistical methods “won’t get the kind of under-
standing that the sciences have always been aimed at” but only “an approximation to what’s
happening,” despite potentially fitting the data better than theoretical explanations. While we
endorse Chomsky’s position here, Piantadosi (2023, 26) quotes him critically, instead arguing in
favor of simulating (such as with an LLM) emergent systems as an alternative to a “Gallilean”
study of capacities that Chomsky, van Rooij and Baggio (2020, 2021), and others endorse.

Piantadosi counters Chomsky’s point with the stock market, and example of an emergent system
that he argues is “understood” through simulation. But, this is another poor analogy. The stock
market, and the economy more broadly, are infamously chaotic systems, and financial institutions
must continuously pour vast monetary and personnel resources into their efforts to keep predictions
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up-to-date, profitable, and secret from the competition. Nobody should hope for a similar state
of affairs in the sciences. Given that financial modeling makes many people a lot of money, it is
telling that economic theories, not just massive predictive models, still form the basis of economic
policy. For all the criticisms that can be levied against the United States Federal Reserve, they are
still wise enough not to leave us at the mercy of some ANNs.

Piantadosi’s second analogy to emergent behavior in beehives is better. However, it is problem-
atic as well, because computational colony modeling does not rely solely on top-down predictive
models. Rather, it also incorporates bottom-up explicit mathematical modeling of individual colony
members (e.g., Belić et al., 1986; Bonabeau et al., 1998; Wittlinger et al., 2006). While linguis-
tic theories based on emergence and self-organization exist (e.g., exemplar theory: Pierrehumbert,
2003; Ambridge, 2020; Gradoville, 2023), these resemble the top-down-plus-bottom-up study of in-
sect colonies, not the current state of black box LLMs. Analogous bottom-up studies of individual
neurons in LLMs or the impact of individual input tokens on LLMs is hampered by their truly
massive size, computing demands, and proprietary nature.

5.2 Linguistic Theories Tell Us What to Look For

To even determine whether the linguistic capabilities of LLMs rival those of humans requires expli-
cating what humans’ capacities actually are; in other words, it requires a separate theory of language.
Despite their flaws, evaluation suites of the likes of Gauthier et al. (2020), Warstadt et al. (2020),
Huebner et al. (2021), and others exist because we have a linguistic theory that tells us what to
look for. The same can be said for evaluation methods that probe representations in ANNs, for
example by searching for the presence of hierarchical or long-distance encodings (e.g., Hewitt and
Manning, 2019; Tenney et al., 2019a; Tucker et al., 2021; Papadimitriou et al., 2021). Consider,
for example, the binding principles for anaphors (e.g., himself, herself, themselves) introduced in
Chomsky (1981), of which Principle A accounts for the following differences in grammaticality:

(1) * I think she loves myself.

(2) * I love herself.

(3) I think she loves herself.

Principle A explains these differences in terms of the same abstract universals as were used for
subject-verb agreement: hierarchical structure, features, and locality. In its essence, Principle
A states that an anaphor must co-refer to another noun in the same sentence (explaining the
ungrammaticality of (2), since herself has nothing to co-refer with), and that it must co-refer
with the hierarchically closest eligible coreferent (explaining the ungrammaticality of (1), since
she is eligible and closer to myself than I is). Coreference is implicated in Chomsky’s and related
theories by copying φ-features (person, number, gender) from the noun to the anaphor, for example
by copying {3, singular, fem} from she to herself in (3). Popular grammaticality test suites are
designed to test for the encoding of Principle A in LMs,16 but without the work of Chomsky

16Nevertheless, it is not clear that these tests even succeed at evaluating Principle A in the first place (cf.
§2). BLiMP, for example, contains seven Principle A data sets. GPT-2 achieves 100% accuracy on the first one,
principle A c command. These, and all BLiMP sentences, were programmatically generated from templates, not
extracted from real data, and these templates have introduced unintended regulariteis in the data which could be
exploited as shortcuts. We observe at least one such shortcut for solving principle A c command: Every single sen-
tence begins with an optional determiner or quantifier followed immediately by a noun, and its anaphor is always
the last word. The exact same “agree with the leftmost noun” linear rule that achieves perfect accuracy on BLiMP’s
subject-verb agreement test sentences would also achieve perfect accuracy here. This data set does not provide a
good test of Principle A.

But least principle A c command requires a model to recognize morphological agreement. The other data sets
contain similar or worse faults. principle A case 2 can be solved almost perfectly by just checking that the verb
immediately following the anaphoric pronoun ends in -ing. Almost perfectly, because 13 ‘correct’ sentences, all
including the verb skated, are actually copies of the corresponding ungrammatical sentence, as in “Leslie imagined

17

https://github.com/alexwarstadt/blimp/blob/master/data/principle_A_c_command.jsonl
https://github.com/alexwarstadt/blimp/blob/master/data/principle_A_case_2.jsonl


(1981) – and theoretical linguistics more broadly – we would not have this principle to test. We
might intuitively know that (1) or (2) sound bad, and we could identify them as vanishingly rare
in language corpora, but we need a theory to explain why they are bad. Theoretical linguistics
gives us this explanation. Again, even if LLMs can perfectly discriminate sentences like (2) or
(3) from sentences like (1), they still do not explain why the difference in grammaticality exists.
Theories make concrete predictions about the causes of the difference in grammaticality between
sentences, and these predictions can be empirically tested in ways that explicitly control for potential
confounds.

5.3 Linguistic Theories Make Fundamental Distinctions

Consider an even more fundamental distinction. The sentence “colorless green ideas sleep furi-
ously” was famously introduced by Chomsky (1957) to demonstrate the independence of structural
information – the syntax – from information about meaning and interpretation – the semantics.
All the bigrams in this sentence – colorless green, green ideas, ideas sleep and sleep furiously – are
semantically infelicitous (i.e., they make little or no sense. Something cannot be both green and
colorless, ideas cannot sleep, etc.). Despite this, the sentence is syntactically well-formed and shares
an identical structure with plenty of mundane sentences like “Fluffy orange cats sleep peacefully.”

Piantadosi is confident that ChatGPT has uncovered this distinction on its own. He touts
several sentences prompted from ChatGPT which he believes to be similar to colorless green ideas
sleep furiously in that they are “rare but not impossible” Piantadosi (2023, 16). But infelicity is not
the same as rarity, and none of Piantadosi’s sentences make this crucial distinction. For example,
ChatGPT’s “blue glittery unicorns jump excitedly” is not nonsensical in the same way as Chomsky’s
sentence: there is nothing impossible about being blue and glittery. If internet art is any indication,
glittery may be the natural state for a unicorn, and it is not at all nonsensical for equine unicorns to
jump excitedly. Indeed, only one of his examples contains even a possible infelicitous bigram: clouds
dream. The bigram (with a few interpretations, not all relevant) returns over one hundred thousand
hits on Google (contrast a Google search for “colorless yellow” or “crowded empty plywood”).

Moreover, all of the examples provided by ChatGPT are templatic copies of Chomsky’s sentence.
Each has the form “Adjective1 Adjective2 Noun Verb Adverb,” matching the sequence of
the original sentence. Across all output sentences (with only slight deviations in the first), the
initial adjective constitutes a color term and the second one has to do with being glittery, shiny,
or a related word. It seems, then, that despite producing a canned explanation of Chomsky’s
sentence that was certainly presented many times over in its training data, ChatGPT has not
implemented this explanation in generating new sentences. It does not seem to distinguish rarity
from infelicity, or truly “understand” that the distinction made by Chomsky’s sentence is the
independence of syntactic structure. Rather, like the old ANNs of the Past Tense Debate, it resorts
to frequency more than anything. Piantadosi (2023, 16) acknowledges that ChatGPT “does not
as readily generate wholly meaningless sentences ... likely because meaningless language is rare
in the training data,” but that was the point of Chomsky’s sentence, which both ChatGPT and
Piantadosi seem to have missed.

herself skated around the hospital.”
Other test suites do not fair better. Zorro was designed specifically to test the abilities of LLMs trained on child-

like data. However, all of Zorro’s binding-principle a test sentences are similar to but even weaker than BLiMP’s
principle A case 2. The word following the pronoun always ends in -ing in the grammatical sentences and never
in the ungrammatical. Additionally, the 3rd-to-last word always ends in -ing only in the grammatical sentences,
and most simply, only the grammatical sentences even contain the substring ing. Any of these could contribute to
an exploitable shortcut, which raises the question of what models actually do. As such, it is unclear what we can
conclude from evaluation on this data, as discussed in §2.
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5.4 Section Summary

Put simply, without linguistic theory, we do not know what distinctions we expect LLMs to make,
nor do we know how we expect them to encode those distinctions. Abstract universals such as
hierarchical structure, features, and locality, give computational-level explanations for the patterns
observed within and across languages: they explain the differences in grammaticality in sentences
used to test LLMs, and they tell us what to look for when probing the internal state of the LLMs.
Without linguistic theory, the possibility of testing LLMs is dead in the water. At the same time,
however, linguistic theory goes far beyond benchmarking LLMs; it makes testable, interpretable
predictions about the computational nature of cognitive linguistic representations and their rela-
tionships, explaining the variation that exists in the world’s languages.

6 Conclusion

Large language models are the current pinnacle of achievement in NLP, and the hype surrounding
them is not completely unwarranted. For the first time since the early days of “automatic language
processing” in the 1950s and 1960s, the outputs of NLP research are of broad, accessible, even
transformative, utility for the general population. But that does not mean that every claim regard-
ing their transformative power is warranted as well. Our response to Piantadosi (2023) questions
the role of LLMs in the science of language. Do they constitute a linguistic theory, as Piantadosi
argues, or are they a just new and powerful tool? We have argued for the latter position for four
main reasons. First, LLMs do nothing to refute the Poverty of the Stimulus argument: they are
likely not as unconstrained as Piantadosi and others claim, and even if they were, this would only be
possible because of the inhumanly massive amounts of training data to which they are exposed. In
contrast to LLMs, children are fluent, competent speakers of their native language(s) after relatively
little exposure; this is a central mystery of language learning that linguistics as a scientific discipline
continues to explore in the 21st century. Second, it is inappropriate to conclude that because an
LLM predicts human behavior in some way, it is a cognitive model: simulation is not duplication.
Indeed, much of what we know about LLMs – and ANNs more broadly – suggests that they are in
the same kind as relationship to humans as airplanes are to birds. Third, LLMs cannot constitute
linguistic theories: they are, at the end of the day, uninterpretable, unaccessible corporate software,
and they provide prediction rather than explanation. This point does not detract from the prac-
tical utility of LLMs for NLP, but being a powerful tool does not necessarily make for a powerful
theory. Finally, to even determine whether the linguistic and cognitive abilities of LLMs rival those
of humans requires explicating what humans’ capacities actually are. Ergo, it requires a separate
theory of language. We have concluded with a summary of why generative linguistics provides such
a theory: it tells us not only what to look for in our models, but also makes testable, interpretable
predictions about the computational nature of linguistic representations and their relationships.

Our four arguments against LLMs as a theory of language are non-exhaustive. They both
complement and elaborate on points made by other authors (Katzir, 2023; Rawski and Baumont,
2023) and likely more to come. A rejection of Piantadosi’s view is not a rejection of progress:
the capacity of modern LLMs as NLP tools is still astounding, and their dramatic rate of growth
suggests that further progress is on the immediate horizon. But when it comes to why children learn
language the way they do, or why certain patterns surface and others do not cross-linguistically,
LLMs have little to say. In the 21st century, these questions will continue to be asked and answered
by linguistic theory.

19



Acknowledgments

We thank the Department of Linguistics and the Institute for Advanced Computational Science
at Stony Brook University, which provide a broad, deep, and scientifically rich interdisciplinary
environment which synthesizes theory and prediction. We are also grateful to Spencer Caplan, Bill
Idsardi, Mitch Marcus, Scott Nelson, and Charles Yang for their feedback on drafts of this work
as well as Bob Berwick’s reading group for valuable discussion which led to this undertaking. S.P.
gratefully acknowledges funding by the Institute for Advanced Computational Science Graduate
Research Fellowship and the National Science Foundation Graduate Research Fellowship Program
(NSF GRFP) under NSF Grant No. 2234683. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily reflect the
views of the funding agencies or of our colleagues.

References

Ahmad, N., van Gerven, M. A., and Ambrogioni, L. (2020). GAIT-prop: A biologically plausible
learning rule derived from backpropagation of error. Advances in Neural Information Processing
Systems, 33:10913–10923.

Ahmed, N., Wahed, M., and Thompson, N. C. (2023). The growing influence of industry in AI
research. Science, 379(6635):884–886.

Ambridge, B. (2020). Against stored abstractions: A radical exemplar model of language acquisi-
tion. First Language, 40(5-6):509–559.

Balduzzi, D., Vanchinathan, H., and Buhmann, J. (2015). Kickback cuts backprop’s red-tape: Bio-
logically plausible credit assignment in neural networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 29.

Baroni, M. (2022). On the proper role of linguistically-oriented deep net analysis in linguistic
theorizing. Algebraic structures in natural language, pages 1–16.

Belić, M., Škarka, V., Deneubourg, J.-L., and Lax, M. (1986). Mathematical model of honeycomb
construction. Journal of mathematical Biology, 24:437–449.

Belinkov, Y. and Glass, J. (2019). Analysis methods in neural language processing: A survey.
Transactions of the Association for Computational Linguistics, 7:49–72.

Belth, C., Payne, S., Beser, D., Kodner, J., and Yang, C. (2021). The Greedy and Recursive Search
for Morphological Productivity. Proceedings of the 43rd Annual Meeting of the Cognitive Science
Society.

Berko, J. (1958). The child’s learning of English morphology. Word, 14(2-3):150–177.

Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Franks, N. R., Rafelsberger, O., Joly, J.-L., and
Blanco, S. (1998). A model for the emergence of pillars, walls and royal chambers in termite
nests. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences,
353(1375):1561–1576.

Bornstein, M. H., Cote, L. R., Maital, S., Painter, K., Park, S.-Y., Pascual, L., Pêcheux, M.-G.,
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